45 research outputs found

    Subspaces of tensors with high analytic rank

    Get PDF
    It is shown that for any subspace V⊆Fn×⋯×np of d-tensors, if dim(V)≥tnd−1, then there is subspace W⊆V of dimension at least t/(dr)−1 whose nonzero elements all have analytic rank Ωd,p(r). As an application, we generalize a result of Altman on Szemerédi's theorem with random differences

    Subspaces of tensors with high analytic rank

    Get PDF
    It is shown that if V ⊆ F p n ×⋯×np is a subspace of d-tensors with dimension at least tnd-1, then there is a subspace W ⊆ V of dimension at least t/(dr)−1 p is a subspace of d-tensors with dimension whose nonzero elements all have analytic rank Ωd,p(r). As an application, we generalize a result of Altman on Szemerédi's theorem with random differences

    Gaussian width bounds with applications to arithmetic progressions in random settings

    Get PDF
    Motivated by two problems on arithmetic progressions (APs)—concerning large deviations for AP counts in random sets and random differences in Szemer´edi’s theorem— we prove upper bounds on the Gaussian width of the image of the n-dimensional Boolean hypercube under a mapping ψ : Rn → Rk, where each coordinate is a constant-degree multilinear polynomial with 0/1 coefficients. We show the following applications of our bounds. Let [Z/NZ]p be the random subset of Z/NZ containing each element independently with probability p. • Let Xk be the number of k-term APs in [Z/NZ]p. We show that a precise estimate on the large deviation rate log Pr[Xk ≥ (1 + δ)EXk] due to Bhattacharya, Ganguly, Shao and Zhao is valid if

    Grafentheorie en communicatie

    Get PDF

    Quantum query algorithms are completely bounded forms

    Get PDF
    We prove a characterization of quantum query algorithms in terms of polynomials satisfying a certain (completely bounded) norm constraint. Based on this, we obtain a refined notion of approximate polynomial degree that equals the quantum query complexity, answering a question of Aaronson et al. (CCC’16). Using this characterization, we show that many polynomials of degree at least 4 are far from those coming from quantum query algorithms. Our proof is based on a fundamental result of Christensen and Sinclair (J. Funct. Anal., 1987) that generalizes the well-known Stinespring representation for quantum channels to multilinear forms. We also give a simple and short proof of one of the results of Aaronson et al. showing an equivalence between one-query quantum algorithms and bounded quadratic polynomials

    On the existence of 0/1 polytopes with high semidefinite extension complexity

    Get PDF
    In Rothvoß (Math Program 142(1–2):255–268, 2013) it was shown that there exists a 0/1 polytope (a polytope whose vertices are in {0, 1}n) such that any higher-dimensional polytope projecting to it must have 2Ω(n) facets, i.e., its linear extension complexity is exponential. The question whether there exists a 0/1 polytope with high positive semidefinite extension complexity was left open. We answer this question in the affirmative by showing that there is a 0/1 polytope such that any spectrahedron projecting to it must be the intersection of a semidefinite cone of dimension 2Ω(n) and an affine space. Our proof relies on a new technique to rescale semidefinite factorizations

    Tight hardness of the non-commutative Grothendieck problem

    Get PDF
    We prove that for any ε > 0 it is NP-hard to approximate the non-commutative Grothendieck problem to within a factor 1=2+ε, which matches the approximation ratio of the algorithm of Naor, Regev, and Vidick (STOC’13). Our proof uses an embedding of ℓ2 into the space of matrices endowed with the trace norm with the property that the image of standard basis vectors is longer than that of unit vectors with no large coordinates. We also observe that one can obtain a tight NP-hardness result for the commutative Little Grothendieck problem; previously, this was only known based on the Unique Games Conjecture (Khot and Naor, Mathematika 2009)

    Outlaw distributions and locally decodable codes

    Get PDF
    Locally decodable codes (LDCs) are error correcting codes that allow for decoding of a single message bit using a small number of queries to a corrupted encoding. Despite decades of study, the optimal trade-off between query complexity and codeword length is far from understood. In this work, we give a new characterization of LDCs using distributions over Boolean functions whose expectation is hard to approximate (in L∞ norm) with a small number of samples. We coin the term “outlaw distributions” for such distributions since they “defy” the Law of Large Numbers. We show that the existence of outlaw distributions over sufficiently “smooth” functions implies the existence of constant query LDCs and vice versa. We give several candidates for outlaw distributions over smooth functions coming from finite field incidence geometry, additive combinatorics and hypergraph (non)expanders. We also prove a useful lemma showing that (smooth) LDCs which are only required to work on average over a random message and a random message index can be turned into true LDCs at the cost of only constant factors in the parameters

    Tight hardness of the non-commutative Grothendieck problem

    Get PDF
    We prove that for any ε>0\varepsilon > 0 it is NP-hard to approximate the non-commutative Grothendieck problem to within a factor 1/2+ε1/2 + \varepsilon, which matches the approximation ratio of the algorithm of Naor, Regev, and Vidick (STOC'13). Our proof uses an embedding of 2\ell_2 into the space of matrices endowed with the trace norm with the property that the image of standard basis vectors is longer than that of unit vectors with no large coordinates

    High-entropy dual functions over finite fields and locally decodable codes

    Get PDF
    We show that for infinitely many primes p, there exist dual functions of order k over Fnp that cannot be approximated in L∞-distance by polynomial phase functions of degree k−1. This answers in the negative a natural finite-field analog of a problem of Frantzikinakis on L∞-approximations of dual functions over N (a.k.a. multiple correlation sequences) by nilsequences
    corecore